

United States Patent [19]

Lashmore et al.

Patent Number: [11]

5,711,866

Date of Patent:

Jan. 27, 1998

[54]	ACID ASSISTED COLD WELDING AND
	INTERMETALLIC FORMATION AND
	DENTAL APPLICATIONS THEREOF

[75] Inventors: David S. Lashmore, Lebanon. N.H.: Moshe P. Dariel, Rockville, Md.; Christian E. Johnson, Middletown, Md.; Menahem B. Ratzker, Silver Spring, Md.; Anthony A. Giuseppetti, Frederick, Md.: Frederick C. Eichmiller, Ijamsville, Md.; Glenn L. Beane, Plymouth, N.H.; David R. Kelley, Martinsburg, W. Va.

Assignee: The United States of America as represented by the Secretary of Commerce, Washington, D.C.

[21] Appl. No.: 437,817

May 9, 1995 [22] Filed:

Related U.S. Application Data

[60]	Division of Ser. No. 317,729, Oct. 4, 1994, which is a
	continuation-in-part of Ser. No. 133,316, Oct. 8, 1993,
	abandoned, which is a continuation-in-part of Ser. No.
	802,420, Dec. 4, 1991, Pat. No. 5,318,746.

[51]	Int. Cl. ⁶	***************************************	C25F	1/00;	B22P	1/00;
					A61C	5/04

[52] U.S. Cl. 205/687; 205/704; 205/723; 264/16; 433/226; 433/227; 419/35; 419/39; 419/42; 419/44; 419/61; 427/570; 148/513; 148/514

204/129.95; 148/513-514; 156/656, 664; 419/6, 35, 38-39, 42-44, 48-49, 61; 427/570; 205/687, 704, 723, 80; 264/16; 433/226-227

[56] References Cited

U.S. PATENT DOCUMENTS

Re. 29,093	12/1976	Burns 264/111
2,040,179	5/1936	Livingstone et al 148/513
3,004,332	10/1961	Werner 29/182.5
3.914.507	10/1975	Fustukian

3,933,961	1/1976	Burns 264/111
4,181,757	1/1980	Youdelis 427/229
4,218,507	8/1980	Deffeyes et al 428/328
4,235,631	11/1980	Aliotta et al 148/513 X

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

0 291944 11/1988 European Pat. Off. . 2 216 545 10/1989 United Kingdom

OTHER PUBLICATIONS

PCT/US94/11312, International Search Report. Goetzel, C. G., "Treatise on Powder Metallurgy", pp. 248-250, 1949, vol. 1, Technology of Metal Powders and Their Products.

(List continued on next page.)

Primary Examiner—Donald R. Valentine Attorney, Agent, or Firm-Leydig, Voit & Mayer, Ltd.

[57] **ABSTRACT**

A metallic composite solid, containing alloys and/or intermetallics, is formed by compacting at moderate pressure a mixture of powder particles, foils or sheets at a temperature close to room temperature, well below the melting temperature of the constituent components and without the addition of low melting metals such as mercury, indium or gallium acting as a sintering agent. This low temperature consolidation of the powder mixture is enhanced by having the surface oxide of the powder particles removed, prior to consolidation, and/or by coating the particles with an oxide-replacing metal such as silver or gold. The coating process may be replacement reactions, autocatalytic reduction or electrolytic reduction. The composite formation is assisted by the addition of a liquid acid such as fluoroboric acid, sulfuric acid, fluoric acid, adipic acid, ascorbic acid, or nitric acid. A preferred embodiment of the process for metal solid composite formation is a process for forming dental restorative materials at ambient temperatures and under pressure exerted by manual dental instrumentation.

27 Claims, 20 Drawing Sheets

